плк323.тл

Контроллер

программируемый руководство

логический по эксплуатации

По вопросам продаж и поддержки обращайтесь:

Волгоград +7 (8442) 45-94-42 Омск +7 (381) 299-16-70

Екатеринбург +7 (343) 302-14-75 Пермь +7 (342) 233-81-65

Ижевск +7 (3412) 20-90-75 Ростов-на-Дону +7 (863) 309-14-65

Краснодар +7 (861) 238-86-59 Санкт-Петербург +7 (812) 660-57-09

Красноярск +7 (391) 989-82-67 Саратов +7 (845) 239-86-35

Москва +7 (499) 404-24-72 Сочи +7 (862) 279-22-65

сайт: owen.pro-solution.ru | эл. почта: own@pro-solution.ru телефон: 8 800 511 88 70

EAC

Содержание

введени	9	3
1 Назнач	ение	8
2 Технич	еские характеристики и условия эксплуатации	
2.1	Основные технические характеристики	9
2.2	Условия эксплуатации	.16
2.3	Помехоустойчивость	.17
3 Устрой	ство и особенности конструкции	18
3.1	Конструкция прибора	
3.2	Индикация	26
3.3	Часы реального времени	26
3.4	Заводские настройки	.26
4 Исполь	ызование по назначению	27
5 Меры б	безопасности	29
6 Монтах	к и подготовка к работе	30
6.1	Установка контроллера	30
6.2	Монтаж внешних связей	32
6.3	Пробный пуск	. 37
6.4	Помехи и методы их подавления	38
6.5	Порядок программирования контроллера	. 39
7 Технич	еское обслуживание	
8 Требов	ания к маркировке	41
9 Упаков	ка контроллера	42
	тектность	
11 Транс	портирование и хранение	43
	тийные обязательства	
Приложе	ние А. Габаритные и установочные размеры	44

Приложение Б. Схемы подключения к ПЛК323.ТЛ	4
Приложение В. Порядок программирования ПЛК323.ТЛ	5

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием контроллера программируемого логического ПЛК-323.ТЛ (далее по тексту также именуемого «контроллер ПЛК323.ТЛ», или «контроллер», или «ПЛК323.ТЛ»).

Контроллер ПЛК323.ТЛ произведён в соответствии с ТУ 4252-008-46526536-2012 и соответствует требованиям ГОСТ Р 52931–2008, ГОСТ Р 51840–2001 и ГОСТ Р 51841–2001.

ПЛК323.ТЛ выпускается в нескольких исполнениях, отличающихся видом питающего напряжения, типом поддерживаемых интерфейсов связи, конструктивным исполнением и видом управляющего программного обеспечения.

Исполнения ПЛК323.ТЛ имеют следующее условное обозначение:

Среда исполнения ПЛК:

ТЛ – Enlogic, через SCADA –систему «Телемеханика ЛАЙТ»

Напряжение питания:

- 24 питание контроллера должно производиться от блока питания напряжением от 9 до 30 В (номинальное значение 24 В);
- 220 питание контроллера должно производиться от сети переменного тока частотой от 47 до 63 Гц и напряжением в диапазоне от 90 до 264 В (номинальное напряжение 230 В).

Количество и типы поддерживаемых интерфейсов связи:

03 – один интерфейс RS-232, два интерфейса RS-485;

Конструктивное исполнение:

пластиковый корпус с уровнем защиты IP20, предназначенный для настенного крепления или крепления на DIN-рейку;

Количество и типы входов/выходов:

1 – 4 входа, 4 входа/выхода, 4 выхода.

Используемые термины и сокращения

DDNS

DHCP

DvnDNS

FreeDNS

GSM

GPRS

AWG - (American Wire Gauge) американский стандарт типоразмеров медных проводов, в котором их геометрические размеры (диаметр провода) обозначается цифровым кодом от 1 до 50.

CSD - (Circuit Switched Data) технология передачи данных с коммутацией каналов в сетях GSM.

DNS - (Domain Name System) компьютерная распределённая система для получения информации о доменах. Чаще всего используется для получения IP-адреса по имени хоста.

 (Dynamic DNS) технология, позволяющая информации на DNS-сервере обновляться в реальном времени, и (по желанию) в автоматическом режиме. Она применяется для назначения постоянного доменного имени устройству (компьютеру, ПЛК) с динамическим IP-адресом.

(Dynamic Host Configuration Protocol) сетевой протокол, позволяющий компьютерам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети.

 (dyn.com/dns) сервис, который позволяет пользователям получить субдомен, привязанный к пользовательскому устройству, не имеющему статического IPадреса.

 - (freedns.afraid.org) еще один сервис, предоставляющий услуги, аналогичные DynDNS.

- (Global Service Mobile) общий стандарт для сетей мобильной связи.

- (General Packet Radio Service) сервис для передачи пакетированных данных посредством радиосигнала.

N	И	o	d	b	u	S
---	---	---	---	---	---	---

- открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).

Modbus-TCP PDU версия протокола Modbus, адаптированная к работе в сети TCP/IP.

PPP

- (Protocol Description Unit) протокол передачи SMS-сообщений в GSM-сетях.

(Point-to-Point Protocol) двухточечный протокол канального уровня. Обычно используется для установления прямой связи между двумя узлами сети. энергонезависимая память для хранения значений Retain-переменных пользо-

Retain-память

вательской программы.

- переменные пользовательской программы, значение которых сохраняется при

Retainпеременные

выключении питания контроллера.

– (Subscriber Identification Module) идентификационный модуль абонента.

SIM-карта SMS

- (Subscriber Identification Module) идентификационный модуль абонента

 (Short Messages Service) сервис, предназначенный для приема и передачи коротких сообщений посредством радиосигнала.

SMS-CB SMS-MO - сервис приема широковещательных коротких сообщений.

SMS-MT

сервис передачи коротких сообщений.сервис приема коротких сообщений.

SMS-M

(Virtual Private Network) обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх дру-

печить од гой сети.

АРМ - Автоматизированное рабочее место

АСКУЭ Категория используе-

- автоматизированная система контроля и учета энергоресурсов. - (по ГОСТ Р 50030.1–2000) для типичной области применения:

АС-15 – для переменного тока: управление электромагнитными нагрузками;

мой нагрузки ОЗУ

DC-13 – для постоянного тока: управление электромагнитами постоянного тока. – оперативное запоминающее устройство, оперативная память.

ПК

персональный компьютер.

ПЛК

- программируемый логический контроллер.

Проект ПО Среда исполнения

- результат проектирования алгоритма работы контроллера.
- программное обеспечение.
- операционная среда или система, выполняющая управление системными ресурсами контроллера и осуществляющая доступ проекта к периферийным устройствам контроллера.

1 Назначение

Программируемый логический контроллер ПЛК323.ТЛ представляет собой устройство, предназначенное для исполнения программы пользователя. ПЛК может взаимодействовать с различными внешними приборами, которые подключаются к контроллеру.

Логика работы ПЛК323.ТЛ определяется пользователем в процессе программирования контроллера с помощью ПК.

ПЛК323.ТЛ может быть использован в системах автоматического управления технологическим оборудованием в различных областях промышленности, жилищно-коммунального и сельского хозяйства, АСКУЭ, систем сбора и передачи данных (СПД), в качестве коммуникационного контроллера для объединения устройств с различными протоколами/интерфейсами в единую сеть.

Контроллер оснащен портом Ethernet 10/100 Мбит/сек, встроенным GSM/GPRSмодемом, слотом для работы с картами памяти типоразмера microSD, энергонезависимыми часами реального времени.

Контроллер имеет четыре универсальных дискретных входа/выхода и четыре дискретных входа с групповой гальванической развязкой.

В ПЛК323.ТЛ присутствуют следующие интерфейсы и выходные устройства (зависит от модификации):

- два гальванически развязанных интерфейса RS-485;
- один интерфейс RS-232;
- четыре переключающих релейных выхода;

ПЛК323.ТЛ предназначен для функционирования под управлением среды исполнения, тип которой зависит от модификации контроллера.

2 Технические характеристики и условия эксплуатации 2.1 Основные технические характеристики

Основные технические характеристики контроллера представлены в таблицах 2.1 - 2.5.

Таблица 2.1 – Общие технические характеристики

Параметр	Значение (свойства)	
Пит	ание	
Напряжение питания ПЛК323.ТЛ-24 ПЛК323.ТЛ-220	от 9 до 30 (номинальное значение 24 В) от 90 до 264 (номинальное значение 110/230 В)	
Потребляемая мощность, не более ПЛК323.ТЛ-24, Вт ПЛК323.ТЛ-220, ВА	20 15	
Интерфе	йсы связи	
Для всех модификаций	Один интерфейс RS-232 (порт Р3), один интерфейс Ethernet 10/100 Мбит/сек (порт LAN), один GSM/GPRS -модем	
ПЛК323.ТЛ-ХХ.03	два интерфейса RS-485 (сигналы Data+, Data-, GND) с индивидуальной гальванической раз- вязкой (порты P1 и P2)	

Продолжение таблицы 2.1

Параметр	Значение (свойства)	
Дискретные в	ходы/выходы	
Количество универсальных дискретных входов/выходов (порт Р4)	4	
Количество дискретных входов (порт Р5)	4	
Количество релейных выходов (только для ПЛК323.ТЛ-X.X.X1)	4	
Ресурсы и дополните	ельное оборудование	
Центральный процессор	ATMEL 180 МГц AT91RM9200 (ARM9)	
Объем оперативной памяти (тип памяти), Мб	64 (SDRAM)	
Объем энергонезависимой памяти (тип памяти), Мб	16 (NOR Flash)	
Тип SD карты	microSD/microSDHC	
Размер Retain-памяти (MRAM), кбайт	128	
Время выполнения одного цикла программы	установленное по умолчанию (стабилизированное) – 20 мс	
Дополнительное оборудование	— автономные часы реального времени (точность хода при $+25$ °C — не более $\pm 0,7$ сек в сутки, время автономной работы при $+25$ °C — не менее 24 месяцев); — сторожевой таймер (Watchdog Timer); — microSD-сокет.	

Окончание таблицы 2.1

Параметр	Значение (свойства)	
Общие с	ведения	
Габаритные размеры, мм	$(157 \times 129, 5 \times 34) \pm 1$	
Масса, кг, не более	0,3	
Степень защиты корпуса по ГОСТ 14254–96	IP20 со стороны передней панели,	
	IP00 со стороны клемм	
Индикация на передней панели	Светодиодная	
Средняя наработка на отказ, ч	100 000	
Средний срок службы, лет	8	

Таблица 2.2 – Характеристики входов и выходов прибора

Параметр	Значение (свойства)			
Характеристики дискретных входов				
Напряжение логической «1» дискретного входа, В	от 15 до 30			
Ток логической «1» дискретного входа, мА	от 3 до 15			
Напряжение логического «0» дискретного входа, В	от 0 до 5			
Максимальный ток логического «0» дискретного входа, мА	2			
Минимальная длительность импульса, воспринимаемая	25			
дискретным входом (скважность 50 %), мс	20			
Электрическая прочность групповой гальванической изо-	1500			
ляции дискретного входа, В	1000			
Характеристики дискретных выходов				
Максимальное напряжение на дискретном выходе, В	30			
Максимальный ток нагрузки дискретного выхода, мА	250			
Максимальный ток утечки дискретного выхода, мА	15			

Продолжение таблицы 2.2

Параметр	Значение (свойства)
Тепловая защита от перегрузки по току	нет
Защита от КЗ	нет
Защита от неправильного подключения	нет
Максимальное время переключения транзисторного выхо-	
да, мс	
из состояния «лог. 0» в состояние «лог. 1»	10
из состояния «лог. 1» в состояние «лог. 0»	5
Электрическая прочность групповой гальванической изо-	1500
ляции дискретного выхода, В	
Характеристики релейных вых	кодов
Максимальное напряжение, коммутируемое контактами	
релейного выхода,	
переменного тока, В	270
постоянного тока, В	30
Максимальное ток, коммутируемый контактами релейного	
выхода:	
нормально замкнутым контактом, А	3 (~ 250 В, категория используемой
	нагрузки АС-15),
	3 (= 30 В, категория используемой
	нагрузки DC-13)
нормально разомкнутым контактом, А	10 (~250 В, категория используе-
	мой нагрузки АС-15),
	5 (=30 В, категория используемой нагрузки DC-13)
	TIGI PYSKII DO-13)

Окончание таблицы 2.2

Параметр	Значение (свойства)
Минимальная рекомендуемая нагрузка на контактах релейного выхода, не менее	10 мА при 5 В
Максимальное время переключения контактов релейного выхода, мс	10
Механический ресурс релейного выхода	 не менее 25 000 циклов переключений при максимальной коммутируемой нагрузке; не менее 200 000 циклов переключений при коммутации нагрузки менее половины от максимальной.
Электрическая прочность гальванической изоляции релейного выхода, В	3000

Таблица 2.3 – Характеристики последовательных интерфейсов связи контроллера

Наименование	Характеристики			
RS-232				
Тип соединителя	разъёмный клеммный соединитель			
Сигналы	RxD, TxD, GND			
Скорости обмена данными, бит/сек	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200			
Гальваническая развязка	нет			
Прочность изоляции, В	-			

Окончание таблицы 2.3

Наименование	Характеристики		
RS-485			
Тип соединителя	разъёмный клеммный соединитель		
Сигналы	A(Data+), B(Data-), GND		
Скорости обмена данными, бит/сек	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200		
Гальваническая развязка	есть		
Прочность изоляции, В	1500		
Максимальное количество приборов в сети	255		

Таблица 2.4 - Интерфейсы связи

Интерфей- сы связи	Протоколы (тип связи)	Формат передачи данных	Скорости передачи*	Длина кабеля, м, не более	Тип рекоменду- емого кабеля
RS-485	ModBus-RTU, DNP3, MЭК 61870-5-101, MЭК 61870-5-103	8 бит, Чёт (Even), Нечёт (Odd), Нет (None), Всегда 1 (Mark), Всегда 0 (Space), 1 или 2 стоп бита	См. таблицу 2.3	1200**	КИПЭВ 1×2×0,6 ТУ 16.К99-008– 2001 или анало- гичный
RS-232	ModBus-RTU, DNP3, MЭК 61870-5-101, MЭК 61870-5-103	8 бит, Чёт (Even), Нечёт (Odd), Нет (None), Всегда 1 (Mark), Всегда 0 (Space), 1 или 2 стоп бита		3	См. таблицу 2.3
Ethernet	Gateway TCP-IP, UDP-IP,Modbus TCP, MЭK 61870-5-104	_	10; 100 Мбит/сек	100	Категория 5 тип UTP (витые пары без экрана), STP или FTP (витые пары в экране)

Примечание * Критерий правильного функционирования интерфейсов связи контроллера – не более 5 % ошибок на любой из скоростей.

^{**} Максимальная скорость обмена зависит от длины кабеля.

Таблица 2.5 - Характеристики GSM/GPRS-модема

Наименование	Характеристики
Поддерживаемые диапазоны частот, МГц	EGSM900/DCS1800/PCS1900
Класс выходной мощности передатчика	4 (EGSM900/GSM850), 1 (DCS1800/PCS1900)
Класс мобильного оборудования	В
Скорость обмена в режиме CSD, бит/сек	9600
Скорость обмена в режиме GPRS, бит/сек	прием – до 85600, передача – до 42800
Типы SIM-карт	1,8 В и 3 В
Тип антенного соединителя	SMA-F
Поддерживаемые типы SMS	SMS-MO, SMS-MT, SMS-CB

2.2 Условия эксплуатации

- 2.2.1 В части требований условий эксплуатации контроллер ПЛК323.ТЛ соответствует ГОСТ Р 51841-2001, раздел 4.
 - 2.2.2 Контроллер ПЛК323.ТЛ эксплуатируется при следующих условиях:
 - закрытые взрывобезопасные помещения или шкафы электрооборудования без агрессивных паров и газов;
 - температура окружающего воздуха от минус 40 до +60 °C;
 - верхний предел относительной влажности воздуха: 95 % при +35 °C и более низких температурах без конденсации влаги;
 - атмосферное давление от 84 до 106,7 кПа;
 - высота над уровнем моря не более 2000 м;
 - допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений).

- 2.2.3 По устойчивости к климатическим воздействиям, к механическим воздействиям, при эксплуатации ПЛК323.ТЛ соответствует ГОСТ Р 51841-2001.
- 2.2.4 По устойчивости к воспламенению и распространению пламени корпус контроллера соответствует ГОСТ Р 51841-2001.

2.3 Помехоустойчивость

- 2.3.1 Контроллер отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ Р 51318.22 и ГОСТ Р 51317.6.2 для оборудования класса А.
 - 2.3.2 Контроллер устойчив к колебаниям и провалам напряжения питания:
 - для постоянного тока в соответствии с ГОСТ Р 51841 длительность прерывания до 10 мс включительно, длительность интервала от 1 сек и более.
 - 2.3.3 Контроллер устойчив к:
 - воздушному электростатическому разряду ± 8 кВ;
 - контактному электростатическому разряду ± 4 кВ.
- 2.3.4 Контроллер устойчив к радиочастотному электромагнитному полю напряженностью до 10 В/м в полосе частот от 80 до 1000 МГц.
- 2.3.5 Порты питания контроллера устойчивы к наносекундным импульсным помехам напряжением до 250 В.
- 2.3.6 Порты ввода-вывода контроллера устойчивы к наносекундным импульсным помехам напряжением до 250 В.
- 2.3.7 Порты питания контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 2 кВ.
- 2.3.8 Порты ввода-вывода контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 1 кВ.
- 2.3.9 Порты питания и ввода-вывода контроллера устойчивы к кондуктивным помехам с уровнем 3 В в полосе частот от 150 кГц до 80 МГц.

3 Устройство и особенности конструкции

3.1 Конструкция прибора

ПЛК323.ТЛ изготавливается в пластмассовом для настенного крепления или крепления на DIN-рейку. Внешний вид приборов представлен на рисунках 3.1 - 3.3.

На лицевой панели ПЛК323.ТЛ (см. рисунок 3.1) расположены:

- Индикаторы состояния релейных выходов;
- Индикаторы состояния дискретных входов порта Р4;
- Двухцветные индикаторы состояния универсальных дискретных входов/выходов порта Р5;
- Индикаторы работы GSM/GPRS-модема;
- Три программируемых функциональных индикатора («Ошибка», «Связь» и «Работа»).
 Функциональное назначение данных индикаторов определяет пользователь;
- Индикатор «Питание».

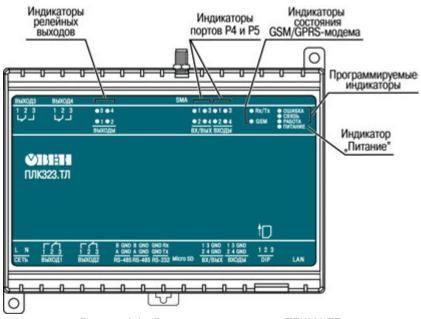


Рисунок 3.1 – Вид на лицевую панель ПЛК323.ТЛ

На верхней поверхности ПЛК323.ТЛ (см. рисунок 3.2) расположены:

- Разъёмные соединители релейных дискретных выходов 3 и 4;
- Антенный винтовой разъём, для подключения внешней GSM антенны.

Рисунок 3.2 – Вид на верхнюю поверхность ПЛК323.ТЛ

На нижней поверхности ПЛК323.ТЛ (см. рисунок 3.3) расположены:

- Разъёмный клеммный соединитель порта питания прибора;
- Разъёмные клеммные соединители релейных дискретных выходов 1 и 2;
- Разъёмные клеммные соединители портов Р1, Р2 и Р3;
- Слот для подключения карт памяти типа microSD/microSDHC. Карта устанавливается контактами в сторону DIN-рейки. Для установки/изъятия карты следует нажать на нее;
- Разъёмные клеммные соединители портов Р4 и Р5;
- Блок DIP-переключателей. Назначение положений DIP-переключателей описано в таблице 3.5;
- Слот для подключения SIM-карты;
- Соединитель порта LAN (интерфейс Ethernet).

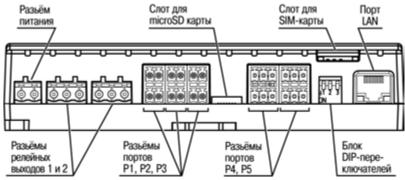


Рисунок 3.3 - Вид на нижнюю поверхность ПЛК323.ТЛ

Назначение контактов соединителей портов P1 – P5 приведено в таблицах 3.1 – 3.2. Порядок нумерации контактов соединителей портов P1 – P5 представлен на рисунке 3.4.

Описание состояния контактов соединителей релейных выходов 1 – 4 при отключении прибора приведено в таблице 3.3. Порядок нумерации контактов соединителей релейных выходов 1 – 4 представлен на рисунке 3.5.

Таблица 3.1 – Назначение выводов соединителей портов Р1 – Р3

№ контакта	P1	P2	P3
	RS-485	RS-485	RS-232
1	Data- (B)	Data- (B)	GND
2	Data+ (A)	Data+ (A)	GND
3	GND1	GND2	RXD
4	GND1	GND2	TXD

Таблица 3.2 - назначение контактов соединителей портов Р4 и Р5

	•
P4	P5
вход/выход 1	вход 1
вход/выход 2	вход 2
вход/выход 3	вход 3
вход/выход 4	вход 4
GND3	GND4
GND3	GND4
	вход/выход 1 вход/выход 2 вход/выход 3 вход/выход 4 GND3

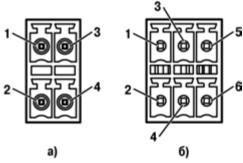


Рисунок 3.4 – Нумерация контактов соединителей портов Р1 – Р3 (а), портов Р4 и Р5 (б)

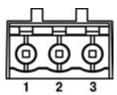


Рисунок 3.5 – Нумерация контактов соединителей релейных выходов 1 – 4

Таблица 3.3 – Описание состояния контактов релейных выходов при отключённом питании прибора

№ контакта	Описание состояния контактов	
1-2	разомкнутый	
2-3	замкнутый	

Назначение контактов соединителей порта LAN приведено в таблице 3.4. Порядок нумерации контактов соединителей порта LAN представлен на рисунке 3.6.

Рисунок 3.6 – Нумерация контактов соединителя LAN

Таблица 3.4 – Назначение контактов соединителей LAN (Ethernet)

Контакт (Pin)	Сигнал (Signal)
1	Etx+
2	Etx-
3	Erx+
6	Erx-

Назначение положений DIP-переключателей прибора описано в таблице 3.5.

Таблица 3.5 – Назначение положений DIP-переключателей

№ переключа- теля	On	Off
1	Переключатель зарезервирован	
2	Выводы порта Р4 настроены как	Выводы порта Р4 настроены как
	выходы входы	
3	Не используется	

Функционал работы индикаторов портов Р4 и Р5 представлен в таблице 3.6.

Таблица 3.6 – Функционал работы индикаторов универсальных дискретных входов/выходов портов Р4 и Р5

Настройка порта	Красный цвет	Зеленый цвет	Нет свечения
Выход	дискретный выход порта в состоянии «включен»	-	Дискретный выход порта в состоянии «выключен»
Вход	-	На входе порта сиг- нал с уровнем «1»	На входе порта сигнал с уровнем «0»

Функционал работы индикатора режима работы GSM/GPRS-модема представлен в таблице 3.7.

Таблица 3.7 – Описание функционала индикатора режима работы GSM/GPRS-модема

Состояние индикатора	Отображаемая функция
Выключен	Нет напряжения питания, прибор выключен
Мигает медленно (с периодом 3 сек)	Прибор зарегистрирован в сети GSM
Мигает (с периодом ~0,8 сек)	Прибор производит поиск сети GSM
Мигает часто (с периодом ~0,3 сек)	Прибор производит обмен данными по GPRS

3.2 Индикация

- 3.2.1 На лицевую панель контроллера выведена светодиодная индикация о состоянии портов, наличии питания, наличии связи и о работе контроллера.
 - 3.2.2 Свечение индикатора «ПИТАНИЕ» отображает наличие питания контроллера.
- 3.2.3 Индикаторы «РАБОТА», «ОШИБКА» и «СВЯЗЬ» являются программируемыми, их функции определяются пользователем.
- 3.2.4 Индикаторы состояния дискретных входов портов P4 и P5 активны в случае присутствия на соответствующих входах портов логической «1»;
- 3.2.5 Индикатор режима работы GSM/GPRS-модема. Функционал работы индикатора описан в таблице 3.7.
- 3.2.6 Индикатор «Rx/Tx» GSM/GPRS-модема. При передаче данных активен индикатор красного свечения, при приеме данных активен индикатор зеленого свечения.

3.3 Часы реального времени

ПЛК323.ТЛ оснащен энергонезависимыми часами реального времени (RTC), которые обладают высокоточной характеристикой счета времени. Ошибка счета времени RTC составляет не более 0,7 секунды в сутки, во всем температурном диапазоне эксплуатации прибора. Это позволяет увеличить период синхронизации прибора с серверами точного времени для коррекции внутреннего времени прибора. RTC имеют резервное питание от встроенной литиевой батареи. Продолжительность работы литиевой батареи составляет не менее 2-х лет при отсутствии напряжения питания прибора.

3.4 Заводские настройки

ПЛК323.ТЛ поставляется со следующими заводскими настройками:

– IP адрес: 192.168.0.77– шлюз: 192.168.0.1

маска подсети: 255.255.255.0

4 Использование по назначению

Перед использованием контроллер ПЛК323.ТЛ необходимо запрограммировать, т.е. создать пользовательскую программу. После создания, пользовательская программа может быть сохранена в энергонезависимой Flash-памяти контроллера и запускаться на выполнение после включения питания или перезагрузки. При отключении питания ПЛК323.ТЛ, возможно автоматическое сохранение временных переменных в энергонезависимой памяти.

Программирование контроллера осуществляется с помощью SoftLogic-системы Enlogic, входящего в состав ПО «Телемеханика ЛАЙТ». В качестве интерфейса для связи со средой программирования Enlogic может быть применен только порт Ethernet.

На рисунке 4.1 представлен пример подключения контроллера к ПК для программирования через порт Ethernet. В приведённом примере контроллер подключен к ПК напрямую с помощью кросс-кабеля (с распайкой контактов, представленной в Приложении Б (рисунок Б.1 и таблица Б.1)). Кабель включается в гнездо (порт Ethernet), расположенное на нижней поверхности контроллера. Ответная часть кабеля подключается к порту Ethernet ПК.

ПЛК323.ТЛ может быть подключен через Ethernet к ПК и с использованием сетевого концентратора (HUB) (см. рисунок 6.2) — для этого используется «прямой» кабель (см. рисунок 6.2).

Подробнее программирование и настройка контроллера описаны в Приложении В.

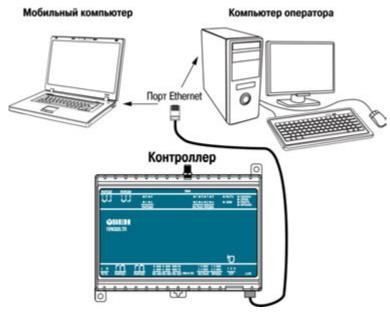


Рисунок 4.1 – Вариант подключения к ПК для программирования контроллера через порт Ethernet

5 Меры безопасности

- 5.1 По способу защиты от поражения электрическим током приборы ПЛК323.ТЛ классу II в соответствии с ГОСТ 12.2.007.0-75
- 5.2 При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 5.3 Открытые контакты клемм контроллера при эксплуатации находятся под напряжением. Установку контроллера следует производить в специализированных шкафах, доступ внутрь которых разрешён только квалифицированным специалистам. Любые подключения к контроллеру и работы по его техническому обслуживанию производятся только при отключённом питании контроллера и подключённых к нему устройств.
- 5.4 Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера. Запрещается использование контроллера при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.
- 5.5 Подключение и техническое обслуживание контроллера ПЛК323.ТЛ должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

6 Монтаж и подготовка к работе

6.1 Установка контроллера

- 6.1.1 При монтаже контроллеров необходимо учитывать меры безопасности, представленные в разделе 5.
- 6.1.2 При монтаже, для контроллера предварительно подготавливается место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов.
- 6.1.3 Контроллер закрепляется на DIN-рейку или внутреннюю стену шкафа защёлкой вниз.

Установка контроллеров на DIN-рейке осуществляется в следующей последовательности:

- Производится подготовка на DIN-рейке места для установки контроллера в соответствии с размерами, приведенными в Приложении А;
- 2 Контроллер устанавливается на DIN-рейку в соответствии с рисунком 6.1а, по стрелке 1;
- 3 Контроллер с усилием прижимается к DIN-рейке в направлении, показанном стрелкой 2, до фиксации защёлки (рисунок 6.1, а);
- 4 Для съема контроллера с DIN-рейки в проушину защёлки вставляется острие отвертки (см. рисунок 6.1, б), и защёлка отжимается по стрелке 1, после чего контроллер отводится от DIN-рейки по стрелке 2.

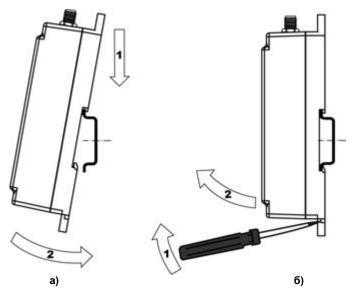


Рисунок 6.1 – Монтаж контроллера с креплением на DIN-рейку

Установка контроллеров на щите управления осуществляется в следующей последовательности:

- Производится подготовка на щите управления места для установки контроллера в соответствии с размерами, приведенными в Приложении А.
- 2 Контроллер устанавливается на щите управления и закрепляется двумя винтами М3, не входящими в комплект поставки. Для крепления используются проушины корпуса контроллера.
- 6.1.4 При монтаже следует оставить зазоры между стенками и корпусом контроллера не менее показанных на рисунке А.3 (Приложение А).
- 6.1.5 Если в процессе эксплуатации планируется снятие/установка microSD/microSDHC карты или SIM-карты, необходимо предусмотреть свободное место с правой нижней части контроллера, которое позволит осуществлять свободный доступ к соответствующим разъёмам.

6.2 Монтаж внешних связей

6.2.1 Общие требования к монтажным проводам

Максимальное сечение проводов, подключаемых к ПЛК при монтаже $-0.5~{\rm km}^2$ (соответствует 20 AWG).

Минимальное сечение подключаемых проводов – 0,25 мм².

Внимание! Не следует укладывать сигнальные провода в один жгут или короб с силовыми проводами. Для защиты цепей от влияния внешних наводимых помех рекомендуется применять экранированные кабели.

6.2.2 Подключение питания

Питание контроллера ПЛК323.ТЛ-220 следует осуществлять от распределенной питающей сети, не связанной непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение контрол-лера от сети. Не следует осуществлять питание каких-либо устройств от сетевых контактов контроллера.

32

Питание контроллера ПЛК323.ТЛ-24 рекомендуется осуществлять от локального источника подходящей мощности, установленного совместно с контроллером в шкафу электрооборудования. При питании от распределенной сети требуется устанавливать перед контроллером сетевой фильтр, подавляющий микросекундные импульсные помехи.

6.2.3 Подключение интерфейсов RS-485 и RS-232

Подключение внешних приборов по интерфейсам RS-485 и RS-232 выполняется витой парой проводов с соблюдением полярности, при отключенном напряжении питания всех устройств. Дпина линии связи должна быть не более 1200 метров для интерфейса RS-485, не более 3 метров для интерфейса RS-232. Контакты портов оборудованы съёмными клеммниками, допускающими быструю замену контроллера без полного демонтажа связей подключённых устройств.

Примечание – Обозначение контактов интерфейса RS-485 в приборах производства других фирм может быть следующим: контакту A соответствует обозначение «Data+», контакту B – «Data-».

6.2.5 Подключение к интерфейсу Ethernet выполняется восьмижильным кабелем «витая пара» категории 5. На кабель устанавливаются оконечные соединители без экрана. Ответная часть кабеля подключается к Ethernet-концентратору, к сетевой плате ПК или к иному оборудованию. При подключении к концентратору используется стандартный (прямой) кабель, согласно EIA/TIA-568A, при подключении к сетевой плате или к иному оборудованию используется кабель Up-Link (кабель с перекрёстным монтажом первой и второй пар).

Возможный вариант структуры соединений контроллера при его работе в автоматической системе управления показан на рисунке 6.2. Кабель Ethernet (показан пунктиром) используется для программирования ПЛК и при эксплуатации системы может отсутствовать. GSM/GPRS-модем, встроенный в ПЛК, используется для удаленного контроля системы. К локальной сети, в которой работает контролирующая ПЛК рабочая станция, подключен GSM/GPRS-модем для связи с ПЛК323.Т.П.

- **6.2.6 Подключение microSD/microSDHC карты** допускается, в том числе, и при включённом питании ПЛК. При этом необходимо программно предусмотреть приостановку работы с картой. Карта устанавливается контактами в сторону DIN-рейки (см. рисунок 6.3).
- **6.2.7 При использовании GSM/GPRS-модема** необходима антенна, подсоединяемая к винтовому гнезду типа SMA. Антенна не входит в комплект поставки и приобретается отдельно. Установку/замену SIM-карты стоит производить при отключённом питании ПЛК323.ТЛ и питании подключенных к нему устройств. SIM-карта устанавливается контактами в строну DIN-рейки и скошенным уголком наружу (см. рисунок 6.3). Для извлечения SIM-карты рекомендуется воспользоваться пинцетом.

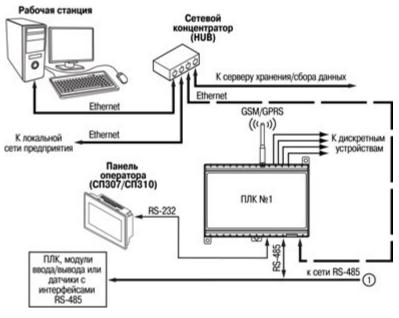


Рисунок 6.2 – Пример структуры соединений при использовании ПЛК323.ТЛ в системе управления

Модули ввода/вывода Мх110

Рисунок 6.2 – Пример структуры соединений при использовании ПЛК323.ТЛ в системе управления (продолжение)

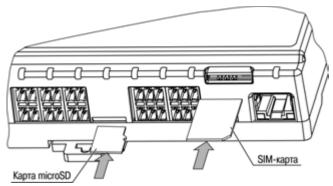


Рисунок 6.3 – Установка microSD и SIM-карты

6.3 Пробный пуск

- 6.3.1 Если контроллер находился длительное время при температуре ниже допустимого рабочего диапазона, то перед включением и началом работ необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону, в течение 30 мин.
 - 6.3.2 Перед подачей питания на ПЛК следует проверить правильность подключения напряжения и его уровень. Для моделей с питанием переменным током:
 - при пониженном напряжении (ниже 90 В) контроллер работать не будет (отключится

 точный порог отключения не регламентируется);
 - при превышении напряжения (более 264 В) возможен выход ПЛК из строя.

- Для моделей с питанием от источника постоянного напряжения:
- при напряжении ниже 9 В работа контроллера не гарантируется (контроллер прекращает функционировать, однако, из строя не выходит);
- при превышении напряжения питания уровня 32 В возможен выход ПЛК из строя.
- 6.3.3 После включения питания контроллер загружается. Если в контроллер была записана пользовательская программа, она начинает исполняться.
- 6.3.4 Если после включения питания выполнение программы не началось, необходимо проверить наличие в памяти контроллера программы и следовать инструкциям раздела 6.5.

6.4 Помехи и методы их подавления

- 6.4.1 На работу ПЛК323.ТЛ могут оказывать влияние внешние помехи:
- помехи, возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на сам ПЛК323.ТЛ и на линии связи с внешним оборудованием;
- помехи, возникающие в питающей сети.
- 6.4.2 Для уменьшения влияния электромагнитных помех необходимо выполнять приведённые ниже рекомендации:
 - обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземлённому контакту щита управления;
 - ПЛК323.ТЛ рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования. Корпус шкафа должен быть заземлён.
- 6.4.3 Для уменьшения помех, возникающих в питающей сети, следует выполнять следующие рекомендации:
 - при монтаже системы, в которой работает ПЛК323.ТЛ, следует учитывать правила организации эффективного заземления и прокладки заземлённых экранов:
 - все заземляющие линии и экраны прокладывать по схеме «звезда», при этом необ-

- ходимо обеспечить хороший контакт с заземляемым элементом;
- заземляющие цепи должны быть выполнены проводами, имеющими максимально возможное сечение.

6.5 Порядок программирования контроллера

- 6.5.1 На ПК устанавливается среда программирования Enlogic (интегрированная в ПО «Телемеханика Лайт»):
- 6.5.2 Создается конфигурация для ПЛК323.ТЛ в Enlogic (Телемеханика ЛАЙТ);
- 6.5.3 Настраивается связь с ПЛК;
- 6.5.4 Конфигурация записывается в контроллер и сохраняется в энергонезависимой памяти ПЛК.

EnLogic — это технологическая платформа для программирования микропроцессорных контроллеров с открытой архитектурой и реализации коммуникационных шлюзов и конвертеров протоколов. EnLogic состоит из исполнительной системы, выполняющейся в контроллере, и инструментальной среды разработки, функционирующей на платформе Win32. EnLogic является базовой составляющей SCADA-система ОВЕН Телемеханика Лайт, и в ее составе отвечает за все коммуникации с модулями ввода-вывода, контроллерами, обработку данных по технологическим алгоритмам пользователя. Также возможно применение системы EnLogic как отдельного продукта, совместно со сторонними системами телемеханики и SCADA.

Исполнительная система EnLogic совместно с конфигурацией, создаваемой инструментальной средой, представляет собой целевую задачу, записываемую в контроллер. В конфигурацию входят технологические программы пользователя и параметры функционирования всех задач.

Описание процедуры конфигурирования ПЛК в среде программирования Enlogic и описание основных возможностей представлено в Приложении В.

7 Техническое обслуживание

- 7.1 При выполнении работ по техническому обслуживанию контроллера следует соблюдать меры безопасности, изложенные в разделе «Меры безопасности».
- 7.2 Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса и разъёмов контроллера от пыли, грязи и посторонних предметов;
 - проверку качества крепления контроллера на DIN-рейке или стене;
 - проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

7.3 Замену элемента питания встроенных часов контроллера необходимо производить каждые 6 лет с момента изготовления контроллера или последней замены. Также элемент питания требуется заменить в случае выявления сброса встроенных часов контроллера при отключении питания.

Внимание! Замена элемента питания производится в демонтированном контроллере при обязательном отключении питания и всех его связей.

Последовательность выполнения замены элемента следующая:

- 1) На задней стенке крестовой отверткой открутить 4 винта;
- 2) Разъединить половинки корпуса контроллера. Извлечь плату;
- 3) Извлечь использованный элемент питания;
- Установить новый элемент питания типа CR1225;
- 6) Собрать корпус прибора. Закрутить 4 крепящих шурупа;
- 7) Подключив питание прибора, настроить часы контроллера;
- 8) Выключить питание контроллера;
- 9) Через промежуток времени, не менее 20 сек, включить питание и проверить работу часов (например, через web-конфигуратор).

8 Требования к маркировке

На корпус прибора и прикрепленных к нему табличках наносятся:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
 - заводской номер прибора и год выпуска.

На потребительскую тару наносятся:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

9 Упаковка контроллера

Упаковка прибора производится в соответствии с ГОСТ 23170 в потребительскую тару, выполненную из гофрированного картона по ГОСТ 7933.

10 Комплектность

Контроллер ПЛК323.ТЛ	1 шт.
Кабель КС15 для смены прошивки и консольного доступа к Linux	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Компакт-диск с ПО	1 экз.

Изготовитель оставляет за собой право внесения дополнений в комплектность контроллера.

11 Транспортирование и хранение

- 11.1 Прибор транспортируется в транспортной таре при температуре окружающего воздуха от минус 30 °C до +70 °C, с соблюдением мер защиты от ударов и вибраций.
 - 11.2 Транспортирование допускается всеми видами закрытого транспорта.
 - 11.3 Транспортирование в самолетах должно производиться в герметичных отсеках.
- 11.4 Хранение контроллера допускается в складских отапливаемых помещениях при температуре от +5 °C до +40 °C, среднегодовом значении относительной влажности 60 % при температуре +20 °C, верхнее значение влажности может достигать 80 % при температуре +25 °C. Воздух помещения не должен содержать агрессивных паров и газов. Приборы должны быть размещены на стеллажах; расположение контроллеров в хранилищах должно обеспечивать их свободное перемещение и доступ к ним; расстояние между стенами, полом хранилища и стеллажами с приборами должно быть не менее 100 мм; расстояние между отопительными устройствами хранилищ и стеллажами с приборами должно быть не менее 0,5 м.

12 Гарантийные обязательства

- 12.1 Изготовитель гарантирует соответствие контроллера требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 12.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 12.3 В случае выхода контроллера из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.
 - 12.4 Порядок передачи контроллера в ремонт содержатся в паспорте и в гарантийном талоне.

Приложение А. Габаритные и установочные размеры

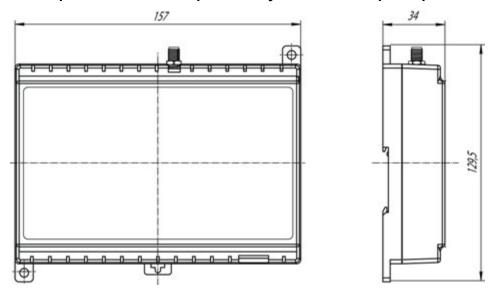


Рисунок А.1 – Габаритные размеры ПЛК323.ТЛ

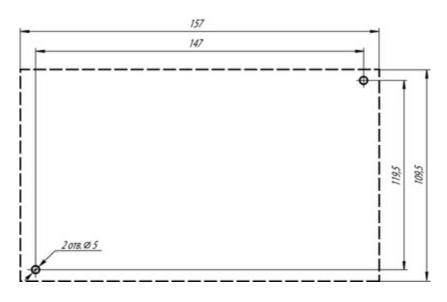


Рисунок А.2 – Разметка для установки на щит

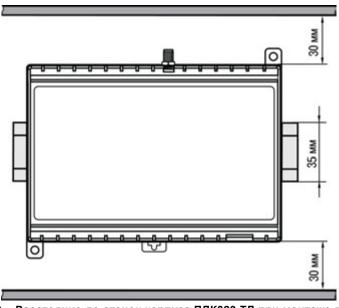


Рисунок А.3 – Расстояние до стенок корпуса ПЛК323.ТЛ при монтаже в шкаф для обеспечения вентиляции

Приложение Б. Схемы подключения к ПЛК323.ТЛ

Схемы подключения к ПЛК323.ТЛ питания представлены на рисунке Б.1

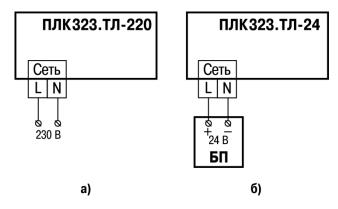


Рисунок Б.1 – Схема подключения питания к ПЛК323.ТЛ

Схемы подключения к ПЛК323.ТЛ интерфейсов RS-232 и RS-485 представлены на рисунке Б.2

Рисунок Б.2 – Схема подключения интерфейсов RS-485 и RS-232

Схемы подключения к ПЛК323.ТЛ различных датчиков представлены на рисунках Б.3 – Б.8.

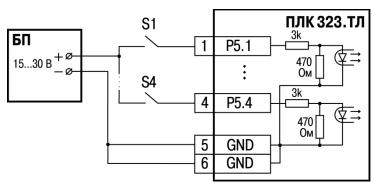


Рисунок Б.3 – Схема подключения контактных датчиков S1 – S4 к дискретным входам ПЛК323.ТЛ

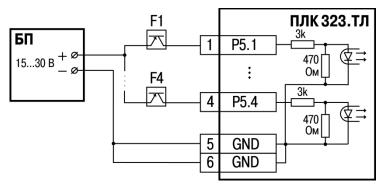


Рисунок Б.4 – Схема подключения к дискретным входам ПЛК323.ТЛ датчиков F1 - F4, имеющих на выходе транзисторный ключ p-n-p-типа

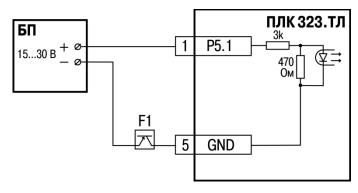


Рисунок Б.5 – Схема подключения к дискретным входам ПЛК323.ТЛ датчиков, имеющих на выходе транзисторный ключ n-p-n-типа

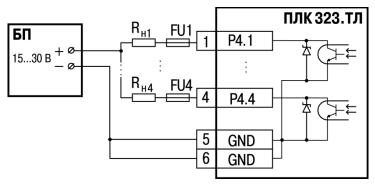


Рисунок Б.6 – Схема подключения к дискретным выходам ПЛК323.ТЛ активной нагрузки

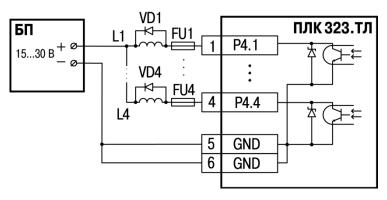


Рисунок Б.7 – Схема подключения к дискретным выходам ПЛК323.ТЛ индуктивной нагрузки

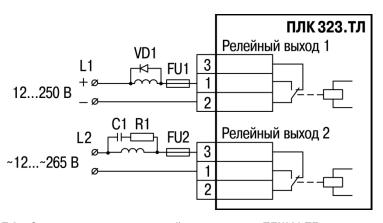


Рисунок Б.8 – Схема подключения к релейным выходам ПЛК323.ТЛ нормально выключенной индуктивной нагрузки по постоянному току (релейный выход 1) и нормально включенной индуктивной нагрузки по переменному току (релейный выход 2)

Приложение В. Порядок программирования ПЛК323.ТЛ

В.1 Установка ПО ОВЕН Телемеханика Лайт

Перед программированием контроллера следует установить на ПК ПО «ОВЕН Телемеханика Лайт» (рекомендуемая версия не ниже 1.1.4).

В.2 Создание проекта

Для начала работы с ПО «Телемеханика Лайт» следует запустить модуль **Интегратор**, например, с помощью ярлыка на Рабочем Столе, созданном автоматически при установке. С помощью **Интегратора** осуществляется:

- открытие существующих проектов;
- создание новых проектов;
- запуск остальных модулей из состава системы.

Для создания проекта следует нажать кнопку «Создать новый проект» и выполнить все шаги, предлагаемые модулем «Мастер создания проекта». По завершению процедуры создания проекта в Интеграторе появится название и описание созданного проекта. Установленный флажок в поле «Проект по умолчанию» означает, что данный проект будет запускаться автоматически при запуске ПО «Телемеханика Лайт».

В.3 Установка связи с контроллером

Работа с контроллером осуществляется в модуле «Контроллеры» ПО «Телемеханика Лайт». Для работы с ПЛК необходимо подключить ПЛК к АРМ посредством Ethernet – кабеля – напрямую или через сетевые устройства. Для осуществления связи с контроллером АРМ, с которого происходит конфигурирование ПЛК, АРМ и ПЛК должны быть в одной подсети.

Для добавления текущей конфигурации ПЛК в среду программирования Enlogic следует выполнить ряд действий:

- 1. Нажать на панели задач «Правка\Импортировать контроллер»;
- 2. Указать IP адрес контроллера и нажать кнопку «Импорт» (заводские настройки контроллера см. в п.3.4).

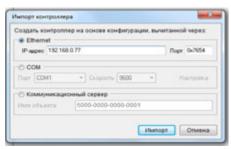


Рисунок В.1 – Импорт контроллера

3.Выбрать уровень доступа и ввести пароль. Для первого уровня доступа ввод пароля не требуется. (пароль второго уровня *entek*; пароль третьего уровня *uspdentek*).

По окончанию процедуры будет выгружена заводская конфигурация ПЛК «Таймер календарь».

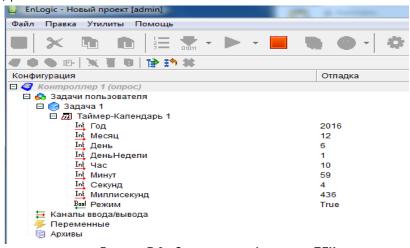


Рисунок В.2 – Заводская конфигурация ПЛК

В.4 Изменение сетевых настроек ПЛК

Для изменения сетевых настроек в режиме опроса необходимо выбрать контроллер в дереве проекта, затем в правой области выбрать вкладку «Контроллер» и нажать на кнопку «Сетевые интерфейсы» (рисунок В.З, блок 1). В появившемся окне пользователь может ввести необходимые сетевые настройки и нажать кнопку «Записать». Изменения вступят в силу после перезагрузки контроллера (для перезагрузки из Enlogic нужно нажать кнопку «Рестарт контроллера» - рисунок В.З, блок 2). Для дальнейшей работы в режиме опроса АРМ и ПЛК должны быть в одной подсети.

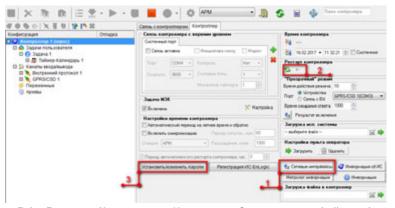


Рисунок В.3 – Вкладка «Контроллер» (1 – кнопка «Сетевые интерфейсы», 2 – кнопка «Рестарт контроллера», 3 – кнопка «Установить/изменить пароли»)

В.5 Изменение паролей доступа ПЛК

Для изменения паролей уровней доступа к ПЛК в режиме опроса необходимо выбрать контроллер в дереве проекта, затем в правой области выбрать вкладку «Контроллер» и нажать на кнопку «Установить/изменить пароли» (рисунок В.З, блок 3). В появившемся окне пользователь должен ввести текущий пароль 3 уровня (по умолчанию пароль третьего уровня *uspdentek*) и присвоить каждому уровню доступа новый пароль. Если оставить поля пустыми, ввода пароля для доступа к ПЛК не потребуется.

Рисунок В.4 - Окно изменения паролей контроллера

В.6 Добавление собственных входов/выходов ПЛК

Для работы с собственными входами/выходами в среде програмирования в задачах пользователя необходимо выбрать внутренний протокол передачи, как показано на рисунке В.5.

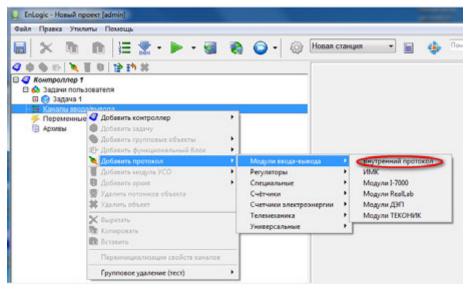


Рисунок В.5 – Добавление внутреннего протокола передачи

После добавления внутреннего протокола в дереве проекта в ветке «Каналы вводавывода» появится пункт «Внутренний протокол». Посредством щелчка правой кнопки мыши на пункте «Внутренний протокол» в выпадающем меню следует выбрать «Модуль УСО —

Внутренний протокол» и добавить DI/ DO/ rele. Описание модулей УСО приведено в таблице В.1.

Таблица В.1 – Описание модулей УСО ПЛК323.ТЛ

Модуль УСО	Описание	
DI порт 1	Соответствует 4-м дискретным входам ПЛК	
DI порт 2	Соответствуют 4-м универсальным входам, для назначения пользователе	
DO	состояния которых может быть выбрано только одно значение: либо д кретного входа (DI порт 2), либо дискретного выхода (DO)	
rele	Соответствует 4 –м релейным выходам	
sys	Предназначен для сервисной отладки и не участвует в работе контролера	

В.7 Добавление модулей ввода-вывода и других устройств с протоколом Modbus

Протокол предназначен для опроса внешних модулей по протоколу Modbus. Контроллер является мастером. Протокол находится в группе Универсальные (рисунок В.6)

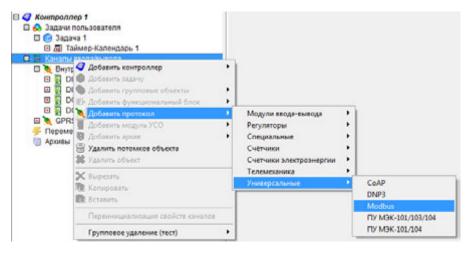


Рисунок В.6 - Добавление протокола Modbus

Посредством щелчка правой кнопки мыши на пункте «Modbus» в выпадающем меню следует выбрать «Модуль УСО – Modbus» и выбрать необходимое устройство. Далее необходимо добавить каналы устройства и указать modbus-адрес модуля (рисунок В.7).

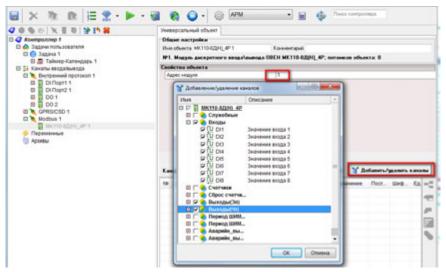


Рисунок В.7 – Добавление каналов устройства Modbus

Более подробную информацию о настройке параметров протокола Modbus см. в справочной системе ПО «Телемеханика Лайт».

В.8 Создание исполняемой программы и загрузка конфигурации в ПЛК

Исполняемая программа ПЛК в среде Enlogic реализуется на языке FBD-блоков. Для создания пользовательской программы необходимо в дереве проекта выбрать задачу пользователя. FBD-программа создается в рабочей области (справа от дерева конфигурации проекта). Для добавления блока нужно в рабочей области кликнуть правой кнопкой мыши и в выпадающем меню выбрать необходимый блок из предложенных (рисунок В.8).

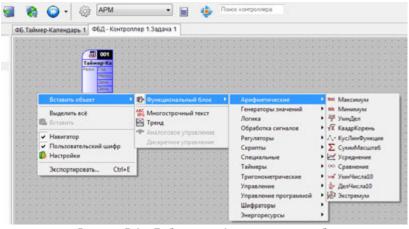


Рисунок В.8 – Добавление функционального блока

Подключение сигналов к функциональным блокам происходить методом «drag&drop» (перетаскивания сигнала на вход/выход блока).

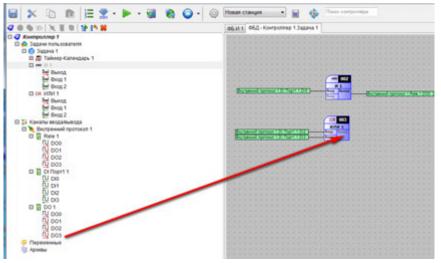


Рисунок В.9 – Привязка сигнала к функциональному блоку

Для загрузки программы в контроллер нужно сохранить проект (рисунок В.10, блок 1), построить конфигурацию для верхнего уровня (рисунок В.10, блок 2), и загрузить конфигурацию в ПЛК (рисунок В.10, блок 3).

Рисунок В.10 – Панель конфигурирования ПЛК. 1- Сохранить проект, 2 - построить конфигурацию для верхнего уровня, 3 – загрузка конфигурации в ПЛК, 4 – запуск глобального опроса (всех устройств)

Для работы с сигналами в конфигурации верхнего уровня всегда необходимо строить конфигурацию для верхнего уровня (рисунок В.10, блок 2).

Более подробную информацию по работе со средой программирования Enlogic см. в справочной системе ПО «Телемеханика Лайт».

По вопросам продаж и поддержки обращайтесь:

Волгоград +7 (8442) 45-94-42	Омск +7 (381) 299-16-70
Екатеринбург +7 (343) 302-14-75	Пермь +7 (342) 233-81-65
Ижевск +7 (3412) 20-90-75	Ростов-на-Дону +7 (863) 309-14-65
Казань +7 (843) 207-19-05	Самара +7 (846) 219-28-25
Краснодар +7 (861) 238-86-59	Санкт-Петербург +7 (812) 660-57-09
Красноярск +7 (391) 989-82-67	Саратов +7 (845) 239-86-35
Москва +7 (499) 404-24-72	Сочи +7 (862) 279-22-65
Ниж.Новгород +7 (831) 200-34-65	Тюмень +7 (3452) 56-94-75
Новосибирск +7 (383) 235-95-48	Уфа +7 (347) 258-82-65

сайт: owen.pro-solution.ru | эл. почта: own@pro-solution.ru телефон: 8 800 511 88 70